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The least squares fitting of experimental results with a non-linear model can result in a
serious loss of accuracy in the model parameters estimation if the statistical nature of the
method is not correctly considered. This occurs when the experimental data is fitted to a
set of functional parameters that depend in the model parameters to be estimated in the end.
A realistic example can be found in the two state model of monomer-excimer kinetics. The
decay curves of the monomer and excimer are a sum and a difference of two exponentials,
respectively. It is usual to fit the experimental decays in order to obtain the pre-exponential
factors and decay constants, thus using a reparametrization that is non-linear with respect
to the model parameters. This procedure is thoroughly discussed and a new method to
analyse the decay curves that circumvents the problem of reparametrization is presented.
The proposed method yields improved results with less than 7% bias in the recovered rate
constants. Monte Carlo simulations have been performed in order to obtain confidence
intervals for the fitting and model parameters.

1. Introduction

The evaluation of adjustable parameters from both linear and non-linear regres-
sion analysis have been extensively discussed [1,2,4]. In general an independent vari-
able y can be expressed in terms of the variables xi (i = 1, . . . ,m) and a set of model
parameters pj (j = 1, . . . ,n). The most simple case occurs when a linear relation-
ship can be established between y (subject to random errors) and the parameters pj ,
being the variables xi considered exact. In this case analytical expressions can be
obtained for the parameters in terms of the variables y and xi, being the variances and
covariances of the parameters obtained in a closed form.

In the most general case of a non-linear relationship between y and the parameters
pj , iterative methods must be used to obtain the best estimate of the parameters. In
this case it is common to fit the results to a set of parameters ql (l = 1, . . . ,n′) that are
functions of the model parameters, ql = g(pj). When the model parameters are non-
linear functions of the fitted parameters, the results are biased, with an eccentricity that
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depends in the variances, covariances and other functions of the fitting quantities. To
solve the problem, the bias on the model parameters has to be deduced from the errors
in the fitting parameters. However, these errors can not be derived by parametric
statistics owing to the linear approximation involved in the non-linear least-squares
analysis [2]. This problem of reparametrization is usually not considered, although
significative errors can be introduced in the calculation of the model parameters.

In this paper the non-linear least-squares methodology is applied to a system
where reparametrization is currently used. We chose the monomer-excimer kinetics
of a well known excimer forming system, pyrene in hydrocarbon solvent [3]. The
monomer decays as a sum of two exponentials and the excimer as a difference of the
same exponentials. The parameters that are usually fitted (the lifetimes and the pre-
exponential values) are complicated functions of the rate parameters. The attempt to
fit simulated decays directly to the model parameters resulted in problems of conver-
gence caused by errors introduced in the numerical calculations. Nevertheless, using
simulated decay curves and Monte Carlo methods we show that the rate constants can
be accurately calculated once the lifetimes are obtained with good precision from the
excimer fit, and its values are maintained in the monomer decay curve fit.

2. Non-linear least-squares fitting

Consider a model depending on an independent variable x (xi: i = 1, . . . ,m)
and n parameters p (pj : j = 1, . . . ,n) with values initially unknown. To each value
of x corresponds a value of ycal (ycal

i : i = 1, . . . ,m) given by the function f ,

ycal = f (p,x). (1)

If one value of a measured property yobs (yobs
i : i = 1, . . . ,m) is related to each

value of x (considered exact) then

yobs = ycal + e, (2)

where e (ei: i = 1, . . . ,m) are the random errors associated with the experimental
measurement of yobs.

The Newton algorithm of non-linear estimation is based on successive approxi-
mations: Firstly the function f is expanded as a Taylor series about an initial value pini

of the parameter vector. Then, keeping only the first term of the series and replacing
the differential dpj by the finite increment ∆pj , we obtain

ycal
i = yini

i +
n∑
j=1

(
∂ycal

i

∂pini
j

)
∆pj (3)

that can be rewritten into the following compact form:

ycal = yini + J∆p, (3′)
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where yini
i = f (pini,xi). This is a good approximation of the function f in the limit

of small ∆pj, i.e., for ycal
i ≈ yini

i .
A vector r (ri: i = 1, . . . ,m) of residuals is defined as r = yobs − ycal. Using

the expression (3′) for ycal we obtain r = ∆y − J∆p, where ∆y = yobs − yini and J
is the Jacobian matrix with elements Jij = ∂ycal

i /∂p
ini
j .

The function S to be minimised is defined as the sum of weighted squares of the
residuals,

S =

m∑
h=1

m∑
k=1

rhWhkrk = rTWr, (4)

where rT is the transpose of the vector of the residuals and W is a weight matrix.
The matrix W is here, as often, taken to be the inverse of the variance-covariance
matrix M of elements

Mij =

{
cov
(
yobs
i , yobs

j

)
, i 6= j,

var
(
yobs
i

)
, i = j.

(5)

The stationary points of the function S are obtained from the system of m equa-
tions

∂S

∂pk
=

m∑
t=1

m∑
u=1

[(
∂rt
∂pk

)
Wturu + rtWtu

(
∂ru
∂pk

)]
= 0 (k = 1, . . . ,m), (6)

which can be written as a matrix product

JTWJ∆p = JTW∆y. (7)

For non-linear equations the set of normal equation (7) can only be solved itera-
tively. The initial parameter values (pini) are estimated, and the subsequent corrections
∆p are calculated. The process is repeated for new values of p ← (p + ∆p) until a
convergence criterion is achieved.

The ∆p values should be calculated so that convergence is achieved in each
step. One of the most used procedures is based on the Marquardt algorithm [5]. This
provides a way to rotate the vector ∆p, calculated for the direction of local steepest
descent, so that maximum convergence is achieved for each iteration [1,2,5,6]. For
sufficiently good initial estimates of the parameters, the process converges giving the
best statistical estimate of the parameters.

Parametric statistics can provide the errors and correlation coefficients of the pa-
rameters. To calculate these errors, the expression for r is substituted in the normal
equations to yield p = Tyobs−a, where T = (JTWJ )−1JTW and a = Tyini−pini.
As the vector a does not have experimental error, the variance-covariance matrix of the
parameters is P = TMT T [2], where M = W−1 is the variance-covariance matrix
of the experimental values yobs and T T is the transpose of matrix T . This expression
simplifies to P = (JTWJ )−1 which contains the information on the parameter errors
(variances) and correlation between parameters (covariances).
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However, for non-linear least squares fitting the errors and correlation coefficients
calculated by parametric statistics are, in a statistical sense, biased. The bias arises
from neglecting the terms of order higher than the first in the Taylor series expansion
of the function f (equation (3)). As a consequence it is impossible to obtain reliable
parameter errors and correlation coefficients using parametric statistics.

Other problems arise when a reparametrization of the equation is done. In this
case the model parameters, pj (j = 1, . . . ,n), are not fitted directly: the fitted para-
meters ql = g(pj) (l = 1, . . . ,n′) are obtained and the model parameters calculated
from pj = g−1(ql). If the number of fitted parameters (n′) is larger than the number
of model parameters (n) the dimension of the problem is altered. That is, n′ − n of
the system constraints are not considered, which results in a chi-square surface with
n′ − n more dimensions. The consequences in the fitting are unpredictable and the
model parameters obtained will be meaningless.

Even if the number of parameters is not changed in the reparametrization, the
values of the model parameters are very difficult to obtain accurately. Indeed, the
values of the fitted parameters q, are the statistical expectations of the parameter
estimators [q̂j] (j = 1, . . . ,n) taken from a sample with N observations:

qj = E[q̂j] =
1
N

N∑
i=1

(q̂j)i. (8)

This has to be considered when evaluating the function g−1 to obtain the model
parameters from the fitting parameters. The values of p should be obtained from the
expectation value of the function of the fitting parameter estimators p = E[g−1(q̂)].
In the non-linear case a “mixture factor” ξq arises comprising variances, covariances
or other functions of the parameter estimators

p = E
[
g−1(q̂)

]
= g−1(E[q̂]

)
+ ξq, (9)

where ξq = 0 when the model parameters are linear functions of the fitted parameters.
So, it is generally incorrect to fit results with functions of the model parameters,

unless the same number of fitting and model parameters is used, and the factor ξq is
correctly considered.

3. The monomer–excimer kinetics

The kinetics of excimer formation can be described by the two-state model shown
in figure 1. Upon excitation, the ground-state monomer M is promoted to an excited
electronic state M∗, with intrinsic lifetime τM = 1/ΓM. Upon the encounter of an ex-
cited monomer with a ground-state species M an excimer can be formed by a bimolecu-
lar reaction with rate coefficient k′DM. A pseudo-first-order parameter kDM = k′DM[M]
can be considered since in the usual experimental conditions [M] > [M∗]. Once
formed the excimer can dissociate with rate coefficient kMD to reform the excited
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plus ground-state monomer or decay to give two ground state monomer with intrinsic
lifetime τD = 1/ΓD. From now on “monomer” will stand for the excited monomer M∗.

Figure 1. Kinetic scheme of excimer formation.

If the excitation is produced by a δ-pulse of light, the concentration of excited
species is given by [3]

[M∗] = aM
1 × exp(λ1t) + aM

2 × exp(λ2t), (10)

[D∗] = aD
1 × exp(λ1t) + aD

2 × exp(λ2t), (aD
1 = −aD

2 ), (11)

where the decay constants and pre-exponential factors are (i = 1, 2)

λi =
−(X + Y ) + (−1)i+1 ×

√
(Y −X)2 + 4kMDkDM

2
, (12)

aM
i = (−1)i

λi + Y

λ2 − λ1
, aD = − kDM

λ2 − λ1
, (13)

and

X = kDM + ΓM, Y = kMD + ΓD. (14)

The non-linear fit of the monomer decay curve allow the calculation of the pa-
rameters aM

1 /a
M
2 , λ1 = −1/τ1 and λ2 = −1/τ2. The rate coefficients are commonly

obtained from the expressions

kDM =−(λ1 + λ2 + ΓM + Y ), (15)

ΓD =
λ1 × λ2 + ΓM × Y

kMD
, (16)

kMD = Y − ΓD, (17)

where the parameter Y (equation (16)) is given by

Y = −a
M
1 /a

M
2 × λ2 + λ1

aM
1 /a

M
2 + 1

(18)
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and τM = 1/ΓM is the intrinsic lifetime of the monomer species, known from an
independent measurement (e.g., from a very diluted pyrene solution).

This procedure can lead to incorrect results since the rate coefficients are obtained
from non-linear expressions of the fitting parameters and it is impossible to calculate
the factors ξq (q = kMD, kDM, ΓD).

To overcome this problem the monomer decay should be fitted directly in terms
of the rate constants. However, this procedure is extremely time consuming as com-
pared to the usual methods and leads to unexpected convergence problems, owing to
the complex dependence of the monomer decay parameters on the fitting parameters
and the random errors in recovering the pre-exponential factors. Then, we develop a
strategy using both the monomer and excimer decay curves, that minimizes the vari-
ances and covariances in the fitted decay parameters, thus reducing the values of ξq
(q = kMD, kDM, ΓD). The decay constants λ1 and λ2, are recovered with good accuracy
from the fit of the excimer decay curve equation (11). Then, the λ1 and λ2 values are
constrained in the monomer fit to obtain the aM

1 /a
M
2 parameter. The rate coefficients

are then calculated by equations (15)–(18) following the classic procedure.

4. Simulated decays

The experimental monomer and excimer decay curves are usually obtained by
the single photon timing technique. The decay curves are recovered as histograms of
the fluorescence intensity (proportional to the excited monomer or excimer concentra-
tion) versus time. The fluorescence intensities are subject to random errors that obey
Poisson statistics. The simulated decays are calculated as a convolution product of
an experimental response function to the expressions (10) or (11) for the monomer or
the excimer, respectively. The number of counts, I0

r (i) (r = M, D), in each channel
i was adjusted, using the pre-exponential factors of the decays, to give 20000 counts
in the most populated channel. In each channel of the histogram of the decay curves
Poisson synthetic noise was added according to the following procedure: for channels
with less than 100 counts, Poisson noise was generated using the inverse transfor-
mation algorithm with standard deviation

√
I0
r (i) [7]. For the other channels (with

more than 100 counts) the central limit theorem is applicable and therefore normally
distributed noise with standard deviation

√
I0
r (i) and mean I0

r (i) was added. This was
done by generating a normally distributed random variable with mean zero and one
standard deviation (Xi) using the polar variation of the Box–Mueller algorithm [7].
Since (Ir(i) − I0

r (i))/
√
I0
r (i) is normally distributed with mean zero and a standard

deviation one, it follows that

Ir(i) = I0
r (i) +Xi

√
I0
r (i). (19)

In order to calculate the variances, covariances and confidence intervals of the
fitted parameters by the Monte Carlo method [1,7], 200 decays were independently
simulated for each set of parameters. The decays were then analysed by the usual free
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fit of monomer decay curves and by the constrained fit, where the lifetimes obtained
from the free fit of the excimer were fixed in the monomer decay curve analysis.
Within the range of 200 to 400 simulations, the statistical parameters do not change.

The confidence intervals can be calculated by two different procedures. Assuming
that the recovered parameter values are normally distributed, their confidence intervals
at 95% probability are equal to two times the standard deviation [2]. On the other end,
the Monte Carlo method allows one to calculate the confidence intervals without as-
suming a distribution. The values of each parameter are sorted in numerical order and
the upper and lower 2.5% are eliminated from the list. This procedure automatically ac-
counts for the errors (variances) and correlations between the parameters (covariances).

5. Results and discussion

Fluorescence decay curves of pyrene monomer and excimer were simulated using
the rate constants, at room temperature in cyclohexane, found by Birks [3]: ΓM =
2.25× 106 s−1, ΓD = 1.55× 107 s−1, kDM = 6.7× 106 s−1 and kMD = 6.5× 106 s−1,
for a concentration of 1.0 × 10−3 M. The corresponding fitting parameters calculated
from equations (12)–(13) and (14) are λ1 = −6.20×10−6 s−1, λ2 = −2.48×10−7 s−1

and aM
1 /a

M
2 = 5.74 and Y = 2.20× 107 s−1.

The simulated decays were analysed using a free double exponential fit of the
monomer decay curves (classical procedure) and the constrained fit of the monomer
decay, with lifetimes obtained from the excimer decay curve analysis.

The analysis of the excimer decay curves allows the calculation of the symmetric
variance-covariance matrix of the decay parameters (table 1).

The confidence intervals calculated by the two methods described above coincide,
thus indicating a normal distribution of parameter values. The expected values and the
95% probability intervals obtained for the parameters as well as the bias in percentages
are shown in table 2.

These results show that λ1 and λ2 are recovered practically without error from
the fit of the excimer decay curves because these are described by a difference of two

Table 1
Variance-covariance matrixes (Mij) of the decay parameters obtained from

the free fit of the pyrene monomer and excimer decay curves.

Monomer aM
1 /a

M
2 τ1(ns) τ2(ns)

aM
1 /a

M
2 1.26× 10−5 4.69× 10−4 3.99× 10−4

τ1(ns) 1.53 1.24× 101

τ2(ns) 3.27× 10−2

Excimer aE
1/a

E
2 τ1(ns) τ2(ns)

aE
1/a

E
2 1.32× 10−7 1.16× 10−5 −5.2 × 10−6

τ1(ns) 8.38× 10−3 −7.33× 10−3

τ2(ns) 1.41 × 10−2
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Table 2
Simulated and obtained values of the monomer and excimer decay

parameters of pyrene and percent bias (ξqi/qi) of the parameters.

Monomer simulated estimated bias

aM
1 /a

M
2 0.174 0.167 ± 0.007 4%

τ1(ns) 40.4 38± 2 6%
τ2(ns) 161.4 161.4 ± 0.4 0%

Excimer simulated estimated bias

aE
1/a

E
2 −1 −1.0001± 0.0009 0%

τ1(ns) 40.4 40.5± 0.2 0%
τ2(ns) 161.4 161.4± 0.2 0%

Table 3
Variance-covariance matrix (Mij) for the model parameters obtained from the

free and constrained fits of the pyrene monomer decay.

Free fit Y (s−1) kDM(s−1) kMD(s−1) τD(ns)

Y (s−1) 5.42× 10−7 8.51 × 101 3.42 × 102 −7.60× 10−4

kDM(s−1) 1.66 × 1010 5.90 × 1010 −9.97× 104

kMD(s−1) 2.25 × 1011 −4.48× 105

τD(ns) 1.21

Constrained fit Y (s−1) kDM(s−1) kMD(s−1) τD(ns)

Y (s−1) 0 0 0 3.43× 10−30

kDM(s−1) 1.95 × 109 2.76 × 109 1.47× 104

kMD(s−1) 4.54 × 109 1.90× 104

τD(ns) 0.121

exponentials with a ratio of pre-exponential factors equal to one. Using the same pro-
cedure to fit the monomer decay curves, we obtain results with much higher associated
errors (tables 1, 2). In this case, the bias of the obtained values for the decay parame-
ters is not zero as for the excimer, but it should be noted that it is always covered by
the confidence intervals.

The monomer decay parameters alone can be used to recover the model para-
meters, whose variances, covariances, confidence intervals and bias are obtained by
the same procedure as before (tables 3 and 4). The parameter Y was included in the
tables for comparison with the proposed analysis method. In the calculation of the rate
constants the value of τM = 444.44 ns was used. This value can be obtained from the
single exponential decay of pyrene in cyclohexane dilute solutions.

The bias in the model parameters are meaningful and for τD, the simulated value
is not even contained in the confidence interval. The confidence intervals calculated
by the Monte Carlo method and assuming a normal distribution give identical results
and therefore the parameter distribution is almost normal.

From the results presented so far the conclusion may be drawn that the decay
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Table 4
Values of the model parameters obtained from the free and constrained fits of the pyrene

monomer decay. Percent bias (ξqi/qi) relative to the simulated parameter values.

Free fit Constrained fit

simulated estimated bias estimated bias

Y (s−1) 2.2 × 10−2 (2.3± 0.1) × 10−2 6% 2.2× 10−2 0%
kDM(s−1) 6.7 × 107 (6.8± 0.2) × 106 2% (6.66± 0.09) × 106 1%
kMD(s−1) 6.5 × 107 (7.2± 0.9) × 106 11% (6.4± 0.1) × 106 1%
τD(ns) 64.5 62± 2 4% 64.5 0%

parameters τ1 and τ2 should be obtained from the excimer decay and not from the
monomer decay. To calculate the three model parameters, another decay parame-
ter (Y ) is needed that has to be taken from the monomer decay analysis. To evaluate
this new method of analysis, τ1 and τ2 were obtained from the excimer decay and
constrained into the corresponding monomer decay, both simulated with independent
random numbers (tables 3, 4).

In the case of pyrene monomer-excimer analysis, the proposed method provide
much better results than the analysis of only the monomer decay. This is not sur-
prising since the possible correlation between the parameters on the free monomer fit
is attenuated or even suppressed if the decay values obtained from an independent
measurement analysis (the excimer decay curve) are constrained in the monomer fit.

6. Conclusions

The statistical nature of least square fitting must always be considered whenever
this method is to be applied to non-linear problems. The monomer-excimer rate con-
stants recovered from simulated monomer decay curves have significant errors, that
result essentially from errors related to the correlation between the fitting parameters.
This can be avoided using the decay constants calculated from the excimer decay curve
in the constrained monomer decay curve analysis. The proposed method is as easy
to implement as the classical one but significantly improves the accuracy of the rate
constants.
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